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Compositional Physical Reasoning of Objects
and Events from Videos
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Abstract— Understanding and reasoning about objects’ physical properties in the natural world is a fundamental challenge in artificial
intelligence. While some properties like colors and shapes can be directly observed, others, such as mass and electric charge, are
hidden from the objects’ visual appearance. This paper addresses the unique challenge of inferring these hidden physical properties
from objects’ motion and interactions and predicting corresponding dynamics based on the inferred physical properties. We first
introduce the Compositional Physical Reasoning (ComPhy) dataset. For a given set of objects, ComPhy includes limited videos of them
moving and interacting under different initial conditions. The model is evaluated based on its capability to unravel the compositional
hidden properties, such as mass and charge, and use this knowledge to answer a set of questions. Besides the synthetic videos
from simulators, we also collect a real-world dataset to show further test physical reasoning abilities of different models. We evaluate
state-of-the-art video reasoning models on ComPhy and reveal their limited ability to capture these hidden properties, which leads to
inferior performance. We also propose a novel neuro-symbolic framework, Physical Concept Reasoner (PCR), that learns and reasons
about both visible and hidden physical properties from question answering. Leveraging an object-centric representation, PCR utilizes
videos and the associated natural language to infer objects’ physical properties without dense object annotations. Furthermore, It
incorporates property-aware graph networks to approximate the dynamic interactions among objects. PCR also employs a semantic
parser to convert questions into semantic programs, and a program executor to execute the programs based on the learned physical
properties and dynamics. After training, PCR demonstrates remarkable capabilities. It can detect and associate objects across frames,
ground visible and hidden physical properties, make future and counterfactual predictions, and utilize these extracted representations
to answer challenging questions. We hope the proposed ComPhy dataset and the PCR model present a promising step towards more
comprehensive physical reasoning in AI systems.

Index Terms—Physical Reasoning, Neuro-Symbolic Models, Hybrid Models.
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1 INTRODUCTION

1 WHAT causes apples to float in water while bananas2

sink? What is the underlying reason for magnets3

attracting on one side and repelling on the other? Objects4

in nature frequently manifest complex properties, which de-5

lineate their interaction schema within the physical world.6

For humans, deciphering these intrinsic physical properties7

often represents pivotal milestones in fostering a more pro-8

found and precise comprehension of nature. The majority9

of these properties are intrinsic in nature, as they are not10

readily apparent through objects’ static visual attributes and11

are only detectable from objects’ interactions. Furthermore,12

these properties influence object motion in a compositional13

manner, where the causal relationships and mathematical14

laws governing these properties can often be complex.15

As depicted in Figure 1, various intrinsic physical prop-16

erties, such as charge and inertia, often result in significantly17

divergent future trajectories. Objects bearing identical or op-18

posite charges will exert either repulsive or attractive forces19
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on one another. The resultant motion is not only related to 20

the magnitude of the charge each object possesses but also 21

to their respective signs, as illustrated in Figure 1-(a). Inertia 22

governs the degree of sensitivity of an object’s motion to 23

external forces. In scenarios, where a massive object interacts 24

with a lighter one through attraction, repulsion, or collision, 25

the lighter object experiences more substantial alterations in 26

its motion relative to the trajectory of the massive object, as 27

depicted in Figure 1-(b). 28

Recent research has introduced a suite of benchmarks 29

aimed at assessing and diagnosing machine learning sys- 30

tems across a range of physics-related settings [1]–[3]. 31

These benchmarks present reasoning tasks involving in- 32

tricate object motion and complex interactions, imposing 33

significant challenges on existing models as they demand 34

an understanding of the underlying physical dynamics to 35

perform well. However, the majority of complexity in the 36

motion trajectories facilitated by these environments arises 37

from alterations or interventions in the initial conditions of 38

the physical experiments. The impacts of objects’ intrinsic 39

physical properties, along with the distinct challenges they 40

present, hold significant importance for further research. 41

However, it is non-trivial to construct a benchmark for 42

compositional physical reasoning. A straightforward ap- 43

proach might involve adhering to the settings established in 44

previous benchmarks [2], [4], wherein a model is required 45

to observe a video and subsequently respond to questions 46

regarding physical properties. Nevertheless, physical prop- 47
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Fig. 1: Non-visual properties like mass and charge govern the interaction between objects and lead to different motion
trajectories. a) Objects attract and repel each other according to the (sign of) charge they carry. b) Mass determines how
much an object’s trajectory is perturbed during an interaction. Heavier objects have more stable motion.

erties are intricate and often cannot be comprehensively48

elucidated within the confines of a single video. Another49

approach is to establish correlations between object ap-50

pearance and physical properties, such as designating all51

red spheres as heavy, and subsequently posing questions52

regarding their dynamics. Nonetheless, this design may53

lead models to employ shortcuts by merely memorizing54

appearances rather than comprehending the interconnected55

physical properties.56

In this paper, we present an extended version of the57

ComPhy benchmark [5], with significant additions, includ-58

ing more diverse simulated scenes, real-world videos, and59

new experimental settings. It centers on the comprehension60

of object-centric and relational physics properties not read-61

ily discernible from visual appearances. Initially, ComPhy62

presents a limited number of video examples featuring63

dynamic interactions among objects. Models are tasked with64

identifying the physical properties of objects and subse-65

quently answering questions pertaining to these properties66

and their associated dynamics.67

As depicted in Figure 2, the ComPhy is composed of68

meta-train and meta-test sets, with each data point com-69

prising four reference videos and one target video. In each70

set, the objects consistently possess the same intrinsic phys-71

ical properties across all videos. To facilitate the task, we72

systematically ensure that each object in the query video73

appears in at least one of the reference videos. Reasoning74

on the ComPhy is challenging. First, models must infer both75

the intrinsic and compositional physical properties of the76

object set using only a limited number of video samples.77

Moreover, they must predict video dynamics based on the78

predicted physical properties.79

To overcome the challenges in ComPhy, we introduce80

Physical Concept Reasoner (PCR). Inspired by recent work81

on neural-symbolic reasoning on images and videos [2],82

[6], [7], our model is modularized with four disentangled83

components: perception, physical property learning, physi-84

cal dynamics prediction, and symbolic reasoning. Our PCR85

model can learn to infer objects’ compositional and intrinsic86

physical properties, predict their future dynamics, and make87

counterfactual imaginations by only watching videos and88

reading question-answer pairs.89

To summarize, this paper makes the following contribu- 90

tions. First, we extend the original ComPhy benchmark [5] 91

by introducing new diverse simulated scenes and real-world 92

video data. It is based on a few-shot reasoning setting that 93

integrates physical properties (mass and charge), physical 94

events (attraction and repulsion), and their compositions. 95

Second, we introduce a new neural-symbolic framework 96

PCR, a modularized model that can infer objects’ physical 97

properties and predict the objects’ movements from watch- 98

ing videos and reading question-answer pairs. Additionally, 99

we collect a real-video dataset to better assess the physical 100

reasoning capabilities of current models in real-world sce- 101

narios. 102

Some preliminary results were presented in our earlier 103

ICLR 2022 paper [5]. In this manuscript, we significantly 104

extend that work in three aspects. First, we introduce a 105

Physical Concept Reasoner, PCR, to learn hidden physical 106

properties like mass and charge from video and language 107

efficiently without dense property supervision signals dur- 108

ing training and perform reasoning in counterfactual and 109

predictive scenes. Second, besides the experiments in the 110

original data [8], we also simulate more diverse phys- 111

ical scenes and collect real videos for physical reason- 112

ing. We perform experiments in both synthetic and real 113

videos and analyze how the new proposed PCR works 114

and fails, while there are only experiments for synthetic 115

data in the original conference version. Third, we also eval- 116

uate recent state-of-the-art large vision-language models 117

(LVLMs) [9], [10] on ComPhy, providing a more thorough 118

analysis. Our code, datasets, and models can be found at 119

https://physicalconceptreasoner.github.io. 120

The rest of the paper is organized as follows. Section 2 121

reviews the related datasets and models based on physical 122

reasoning, video question answering, and few-shot learn- 123

ing. Section 3 introduces how we construct the dataset 124

and reduce its biases. Section 4 analyze how representative 125

baselines and the recent state-of-the-art models perform on 126

the ComPhy benchmark. Section 5 introduces the new PCR 127

model and its optimization mechanism. Section 6 summa- 128

rizes the paper’s contribution, discusses its limitations, and 129

suggests potential extension directions. 130
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Dataset Video Question Diagnostic Composition Few-shot Physical Counterfactual Evaluated
Answering Annotation Reasoning Property Property Dynamics on LVLM

CLEVR [11] - ✓ ✓ ✓ - - - -
MovieQA [12] ✓ ✓ - ✓ - - - -
TGIF-QA [13] ✓ ✓ - - - - - -
TVQA/ TVQA+ [14] ✓ ✓ - ✓ - - - -
AGQA [15] ✓ ✓ - - - - - -

IntPhys [16] ✓ - ✓ - - ✓ - -
PHYRE/ ESPRIT [17] ✓ - ✓ ✓ - ✓ - -
Cater [16] ✓ ✓ ✓ ✓ - - - -
CoPhy [3] ✓ - ✓ - - ✓ - -
CRAFT [4] ✓ ✓ ✓ ✓ - - - -
CLEVRER [2] ✓ ✓ ✓ ✓ - - - -
Physion [18] ✓ - ✓ - - - - -
Physion++ [19] ✓ - ✓ - - ✓ - -

ComPhy (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 1: Comparison between ComPhy and other visual reasoning benchmarks. ComPhy is a physical reasoning dataset
with a wide range of reasoning tasks for physical property learning and corresponding dynamic prediction.

2 RELATED WORK131

Physical Reasoning. Our research prominently aligns with132

contemporary advancements in the domain of physical rea-133

soning benchmarks, as delineated by recent studies [4], [16],134

[18]–[20]. PHYRE [1] and its variant, ESPRIT [17], establish135

an environment where objects maneuver within a vertical136

2D plane, influenced by gravitational forces. Each task137

within this framework is tethered to a distinct goal state, and138

the model seeks resolution by delineating initial conditions139

conducive to achieving said state. Conversely, CLEVRER [2]140

incorporates videos featuring multiple objects in motion,141

colliding on a planar surface, and poses natural language142

questions pertaining to the description, explanation, predic-143

tion, and counterfactual reasoning of the resultant collision144

events. CoPhy [3] encompasses experimental trials involv-145

ing objects moving in 3D space under the influence of grav-146

ity, with a focal point on predicting object trajectories fol-147

lowing counterfactual interventions upon initial conditions.148

CRIPP-VQA [21] introduces a challenge that emphasizes149

reasoning over physical properties such as mass and friction150

from a single video with simple primitive shapes, material151

and colors. Our work builds upon the original ComPhy152

dataset introduced in our prior work [5], extending it with153

more diverse physical scenes and real-world videos, which154

requires models to infer physical properties from a few155

physical interactions in reference videos. Compared to other156

previous datasets, ComPhy requires models to infer intrinsic157

properties from a limited array of video examples and draw158

dynamic predictions based on the identified properties.159

Dynamics Modeling. Modeling the dynamics of physical160

systems has long been a focal point of research. This issue161

has been explored by some researchers through physical162

simulations, drawing inferences regarding crucial system-163

and object-level properties via statistical methodologies164

such as MCMC [22]–[24]. In contrast, others have pro-165

posed to directly ascertain the forward dynamics employing166

neural networks [25]. Owing to their object- and relation-167

centric inductive biases and efficacy, Graph Neural Net-168

works (GNNs) [26] have been broadly applied in predict-169

ing forward dynamics across a diverse array of systems170

[27]–[30]. Our research combines the strengths of both ap-171

proaches: initially inferring the object-centric intrinsic phys-172

ical properties and subsequently predicting their dynamics173

predicated on these intrinsic properties. 174

Video Question Answering. Our research also pertains to 175

the domain of video question answering, which responds 176

to queries about visual content. Several benchmarks have 177

been posited to address the task of video question answer- 178

ing, such as MarioQA [31], TVQA [32], and AGQA [15]. 179

Nevertheless, these datasets primarily concentrate on com- 180

prehending human actions and activities rather than acquir- 181

ing knowledge regarding physical events and properties, a 182

competency crucial for robotic planning and control. 183

We summarize the differences between our extended 184

ComPhy benchmark and other prior physical reasoning 185

datasets in Table 1. Compared to our previous version [5], 186

this work introduces more diverse simulated scenes and 187

real-world videos. Notably, ComPhy remains the only 188

dataset requiring models to infer physical properties from a 189

sparse set of video examples, perform dynamics prediction, 190

and answer compositional reasoning questions. 191

Few-shot Learning. Our research bears relevance to few- 192

shot learning, which learns to classify images utilizing 193

merely a few examples [33]–[36]. ComPhy mandates that 194

models identify object property labels from a limited se- 195

lection of video examples. Contrasting with the aforemen- 196

tioned works, reference videos in our approach do not 197

furnish labels for objects’ physical properties but exhibit 198

more interactions among objects, thereby providing models 199

with information to discern objects’ physical properties. 200

3 DATASET 201

This section describes the dataset used in our benchmark. 202

We build upon our prior work ComPhy [5], originally in- 203

troduced in ICLR 2022, and present a significantly extended 204

version. In addition to the synthetic split described in [5], 205

we enrich the synthetic dataset with more diverse physical 206

scenes and include a new real-world video dataset. First, 207

we introduce video details and the task setup in Section 3.1. 208

Subsequently, Section 3.2 delves into the different categories 209

of questions, while Section 3.3 explores the underlying 210

statistics and ensures balance. Finally, in Section 3.4, we 211

introduce how we build the real-world data set. 212

3.1 Videos 213

Objects and Events. Following [11], objects in ComPhy 214

are characterized by compositional appearance attributes, 215
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I. Factual Question

Q: How many moving objects are 
uncharged?                             
A: 2
Q: Is the purple sphere heavier than 
the brown cube?                       
A: No

II. Counterfactual Question

Q: Which event would  happen if the 
purple object were heavier?

a) The green cube would collide 
with the metal sphere                    				√

b) The metal sphere would collide 
with the brown cube          																	×

III. Predictive

Q: Which event will happen next?
a) The red sphere and the brown 

cube collide                                 							×
b) The purple sphere and the brown 

cube collide                      																			√

… … …

Fig. 2: Sample target video, reference videos and question-answer pairs from ComPhy.

including color, shape, and material. For ease of identifica-216

tion, each object in the videos is uniquely distinguishable217

based on these three characteristics. The dataset incorpo-218

rates events such as in, out, collision, attraction, and repulsion.219

The basic concepts in ComPhy are derived from these object220

appearance attributes, events, and their compositionality.221

Physical Properties. Previous benchmarks [2], [16] predom-222

inantly focused on visually perceptible appearance concepts223

like color and collision, discernible in a single frame. In224

contrast, our dataset, ComPhy, additionally explores the225

intrinsic physical properties of mass and charge, which are226

not directly discernible from an object’s static appearance227

(Figure 1(a,b)). These properties are independent of visual228

features and can interact, resulting in more intricate and229

diverse dynamic scenarios. For simplicity, the dataset cat-230

egorizes objects into discrete mass groups (heavy/ light) and231

charge categories (positively / negatively charged/ uncharged).232

While introducing additional continuous parameters like233

bounciness and friction is possible, the complexity could234

render the dataset overly intricate and hinder intuitive235

property inference from people.236

Video Generation. Each target video designated for237

question-answering encompasses 3 to 5 objects, integrating238

a random compositionality of appearance attributes and239

physical properties. The videos are standardized to a du-240

ration of 5 seconds, with an extended simulation of the 6-th241

and 7-th seconds specifically for annotating questions for 242

future prediction. 243

As in our prior work [5], the synthetic videos are gen- 244

erated in a two-step process using the Bullet physics engine 245

and rendered via Blender. In the first step, we employ 246

the Bullet physical engine [37] to simulate the movements 247

of objects and their interactions with one another. Since 248

Bullet does not officially support the effect of electronic 249

charges, we add external forces between charged objects, 250

whose values are inversely proportional to the square of the 251

objects’ distance, to simulated Coulomb forces. We assign a 252

mass value of 1 to the light objects and a mass value of 5 to 253

the heavy objects. We manually ensure that every reference 254

video includes at least one interaction, such as collision, 255

attraction, or repulsion, among objects, to provide sufficient 256

information for inferring physical properties. Every object in 257

the target video must appear in the reference videos at least 258

once. The simulated object movements are then transmitted 259

to Blender [38] for high-quality image sequences. 260

Task Setup. It presents a non-trivial challenge to design 261

an evaluative framework that accurately assesses a model’s 262

capacity for physical reasoning because physical proper- 263

ties are not discernible within a static frame. A simplistic 264

approach would involve associating physical attributes di- 265

rectly with object appearances like “The red object is heavy”, 266

“The yellow object is light” and then asking “What would hap- 267
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pen if they collide?” However, this setting is flawed, as it fails268

to ascertain whether the model genuinely comprehends the269

physical properties or merely relies on memorizing visual270

cues. An ideal setup would demand a model to demonstrate271

human-like discernment of objects’ properties from their272

motion and mutual interactions within dynamic scenes, and273

subsequently formulate relevant dynamic predictions.274

To achieve this goal, We introduce a meta-framework275

for physical reasoning that pairs a target video with a276

limited set of reference videos, enabling models to infer277

physical properties. Questions are then formulated regard-278

ing these properties and underlying dynamics, as illustrated279

in Figure 2. Thus, each collection includes a target video,280

four reference videos, and numerous inquiries related to281

the target video. Notably, all objects within each collection282

maintain consistent visual attributes, including color, shape,283

and material, as well as intrinsic physical properties, specif-284

ically mass and charge.285

Reference Videos. To enrich the visual content for physical286

property inferring, we supplement each target video with287

four reference videos. From the target video, we select 2 to 3288

objects, assign them different initial velocities and positions,289

and orchestrate interactions such as attraction, repulsion,290

or collision. The reference videos, though lasting 2 seconds291

each for scalability, follow the same generation criteria as292

the target videos. These supplementary interactions help293

models deduce physical properties; for example, observing294

repulsion in Reference Video 1 of Figure 2 indicates that295

object 1 and object 2 possess the same electrical charges.296

3.2 Questions297

Inspired by the previous datasets [2], [11], we propose a298

question engine capable of generating questions that test299

factual, predictive, and counterfactual reasoning abilities.300

Queries. Factual questions are open-ended, requiring concise301

answers in the form of a single word or short phrase,302

and assess a model’s understanding and reasoning about303

objects’ physical properties, visual attributes, events, and re-304

lationships. Building upon existing benchmarks [2], [4], our305

dataset (ComPhy) introduces novel and challenging factual306

questions focused specifically on the physical properties of307

charge and mass (See Figure 2 (I)). Predictive and counter-308

factual questions, conversely, adopt a multiple-choice for-309

mat that critically evaluates the plausibility of each provided310

answer option. Predictive questions require models to analyze311

objects’ physical properties and dynamics to forecast events312

in future video frames. Counterfactual questions investigate313

hypothetical scenarios where an object’s physical properties314

(e.g., charge or mass) are altered, focusing on their impact315

on object dynamics (See Figure 2 (II)). This methodology316

contrasts with prior research [2], [16] that centered on object317

removal, emphasizing the divergent implications of chang-318

ing physical properties for predicting motion instead.319

Templates. We present typical question templates in Ta-320

ble 2. Examining the table reveals that these novel question321

templates incorporate diverse symbolic operators associated322

with physical properties. For example, phrases such as323

“heavy moving spheres” and “charged cubes” demand that324

models deduce the values of objects’ physical properties.325

For counterfactual questions, we introduce novel condi-326

tions, such as “If the cyan object were uncharged” and “If327

Type Template and Example

CUN1 If the SA were MP, Q?
If the sphere were lighter, which event would not happen?

CUN2 If the SA were CP, Q?
If the cube were uncharged, which event would happen?

Mass1 Is the DA1 SA1 heavier than the DA2 SA2?
Is the blue sphere heavier than the gray cube?

Mass2 Is the DA1 SA1 lighter than the DA2 SA2?
Is the blue sphere lighter than the gray cube?

CHR1 Are the DA1 SA1 and the DA2 SA2 oppositely charged?
Are the blue sphere and the purple sphere oppositely charged?

CHR2 Are the DA1 SA1 and the DA2 SA2 with the same type of charge?
Are the cube and the cylinder with the same type of charge?

CHR3 What are the Hs of the two objects that are charged?
What are the colors of the two objects that are charged?

Query What is the H of the DA SA that is PA?
What is the color of the moving cylinder that is heavy?

Exist Are there any PA DA SA TI?
Are there any charged moving cube when the video ends?

Count How many PA DA SA are there TI?
How many heavy stationary spheres are there?

TABLE 2: Typical question templates and examples in Com-
Phy. SA denotes static attributes like “red”; DA denotes
dynamic attributes, “moving”; MP denotes mass attributes
like “heavier”; Q denotes question phrases like “which
of the following would happen”; CP denotes charge
attributes like “uncharged”; H denotes visible concepts
like “material”; PA denotes physical attributes like heavy
and charged; TI denotes time indicators like “when the
video ends”.

the sphere were lighter”. These conditions are designed to 328

enable reasoning about the dynamics when a particular 329

object possesses an alternative physical property. 330

3.3 Balancing and Statistics 331

In total, ComPhy features 8,000 training sets, 2,000 for 332

validation, and 2,000 for testing, with a total of 41,933 333

factual, 50,405 counterfactual, and 7,506 predictive questions 334

constituting 42%, 50%, and 8% of the dataset, respectively. 335

For simplicity, video sets will include a pair of charged 336

objects only if charged objects are already present, and 337

similarly, a video will contain a heavy object or none at all. 338

We ensure that these few video examples are sufficiently 339

informative to answer questions based on the questions’ 340

programs and the properties and interaction annotations 341

in the videos. Specifically, for questions comparing mass 342

or establishing charge relations, we meticulously confirm at 343

least one interaction exhibited between the relevant objects. 344

3.4 Real-World Datasets 345

As shown in Fig. 3, we collect a new real-world video 346

dataset to further estimate the capabilities of physical rea- 347

soning models. The construction of this dataset involves two 348

key stages: real video collection and question annotation. 349

Real Video Collection. We capture a dataset consisting of 350

492 real-world videos using the iPhone’s SLO-MO feature, 351

which records high-definition slow-motion footage at 240 352

frames per second. These videos are organized into 123 353

sets, with 60 sets designated for training and 20 sets for 354
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grey cylinder were not magnetic?
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Fig. 3: Samples of real data. We collect real objects of
different mass values and magnetism for extensive exper-
iments, which have a significant effect on objects’ motion
and interaction.

validation. Each set comprises one target video featuring 3-355

4 objects interacting and 3 associated reference videos con-356

taining 2-3 objects each. This design mirrors the simulated357

video split, focusing on object interactions characterized358

by attributes like color (red, brown, grey), shape (cylinder,359

cube, sphere), magnetism (neutral, attractive, repulsive),360

and mass (heavy and light) in physical world environment.361

Question Annotations. The static attributes, physical prop-362

erties, and events in each video are initially annotated by an363

annotator and subsequently checked by another to ensure364

their correctness. We utilize a question engine similar to365

the one used in the simulated split to generate diverse366

questions, including counterfactual, predictive, and various367

property-based inquiries. The engine randomly selects from368

predefined templates and incorporates video annotations to369

create questions that explore various aspects of physical370

interaction, such as magnetism’s effect on dynamics, the371

influence of mass, and the objects’ static attributes. We372

collect 1,068 questions in total, including 776 for physical373

properties, 134 for counterfactual reasoning, and 158 for374

predictive future events. We provide more details on real-375

world videos in the supplementary material.376

4 EXPERIMENTS377

In this section, we assess baseline models and conduct an378

in-depth analysis to comprehensively study ComPhy.379

4.1 Baselines380

We assess multiple baseline models on ComPhy, as dis-381

played in Table 3. These baselines fall into four categories:382

bias-analysis models [39], video question answering mod-383

els [40], [41], compositional reasoning models [42], [43],384

and large vision-language foundation models [9], [10], [44].385

For a comprehensive comparison, we additionally introduce386

variant models that leverage both the target video and387

reference videos.388

Biased Analysis Models. The first category of models is389

bias analysis models. These models predict answers without390

relying on visual input and aim to scrutinize the language 391

bias present in ComPhy. In particular, the Random model 392

randomly selects answers based on the question type and 393

requires no training. The Frequent model selects the most 394

frequently occurring answer in the training set for each 395

question type, which requires no training phase. Blind- 396

LSTM employs an LSTM [39] to encode the question and 397

predict the answers without visual input; it is trained solely 398

on the question-answer pairs from the dataset’s training 399

split to isolate language bias. 400

Visual Question-Answering Models. The second category 401

of models encompasses visual question-answering models. 402

These models answer questions based on input videos and 403

questions. The CNN-LSTM model [45] is a simple question- 404

answering model. It employs a ResNet-50 [46] to extract 405

frame-level features, averaging them across the time dimen- 406

sion. We encode questions using the final hidden state from 407

an LSTM [39]. The visual features and question embedding 408

are concatenated to make answer predictions with two fully- 409

connected layers. HCRN [41] is a widely adopted model 410

that hierarchically models visual and textual relationships. 411

Both CNN-LSTM and HCRN were trained (or fine-tuned, if 412

using pre-trained components like ResNet) on the training 413

split until convergence on the validation set. 414

Visual Reasoning Models. The third category, visual rea- 415

soning models, includes MAC [42], which decomposes 416

visual question answering into several attention-focused 417

reasoning steps, making predictions based on the hidden 418

output of the final step. In contrast, ALOE [43] capitalizes 419

on transformers [47] and object-centric representation to 420

deliver cutting-edge results on CLEVRER. We use MONet 421

[48] to extract visual representation for ALOE. Similar to the 422

VQA models, both MAC and ALOE were trained (or fine- 423

tuned from general pre-trained weights where applicable) 424

on the dataset’s training split. 425

Large Vision Language Models. The final model category 426

is large vision language models [9], [10], [44], which have 427

been trained on massive vision-language data and shown 428

excellent performance on both language understanding and 429

visual question answering. For ALPRO, we fine-tune the 430

model with ComPhy’s training set until they achieve sat- 431

isfactory results on the validation set. For GPT-4V and 432

Gemini, we evenly sample a fixed number of frames from 433

each target video as visual input, pairing them with corre- 434

sponding questions and a carefully crafted text prompt to 435

guide the model in generating formatted answers. 436

Baselines with Reference Videos. We also introduce varia- 437

tions of existing baseline models that utilize both the target 438

video and reference videos as input. We enhance CNN- 439

LSTM, MAC, and ALOE to create CNN-LSTM (Ref), MAC 440

(Ref), and ALOE (Ref) by incorporating the features of both 441

reference videos and the target video as visual input. We 442

uniformly sample 25 frames from each target video and 10 443

frames from each reference video. 444

Training and Evaluation Fairness. To ensure fair com- 445

parison, all models that underwent training or fine-tuning 446

(Blind-LSTM, CNN-LSTM, HCRN, MAC, ALOE, ALPRO, 447

and the ‘Ref’ variants) were trained on the same train- 448

ing split. We employed consistent hyperparameter tuning 449

strategies (where applicable) and evaluated all models un- 450

der identical conditions on the validation/test splits using 451
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Methods Factual Predictive Counterfactual
per opt. per ques. per opt. per ques.

Random 29.7 51.9 22.6 49.7 9.1
Frequent 30.9 56.2 25.7 50.3 8.7
Blind-LSTM 39.0 57.9 28.7 55.7 12.5

CNN-LSTM [40] 46.6 59.5 29.8 58.6 14.6
HCRN [41] 47.3 62.7 32.7 58.6 14.2

MAC [42] 68.6 60.2 32.2 60.2 16.0
ALOE [43] 54.3 65.9 35.2 65.4 20.8

CNN-LSTM (Ref) [40] 41.9 59.6 29.4 57.2 12.8
MAC (Ref) [42] 65.8 60.2 30.7 60.3 14.3
ALOE (Ref) [43] 57.7 67.9 37.1 67.9 22.2

ALPRO [44] 45.2 56.9 27.2 53.7 14.4
GPT-4V [9] 42.2 60.7 47.1 51.1 8.9
Gemini [10] 37.7 46.5 22.7 49.2 6.3

Human Performance 90.6 88.0 75.9 80.0 52.9

TABLE 3: Evaluation of physical reasoning on ComPhy.
Human performance is based on sampled questions. See
Section 4.2 for more details. Red text and blue text indicate
the first and the second best results.

the specified metrics. The zero-shot evaluation of GPT-4V452

and Gemini is reported separately and interpreted in light453

of their lack of dataset-specific fine-tuning.454

We employ the conventional accuracy metric to assess455

the performance of various methods. In the case of multiple-456

choice questions, we provide both per-option accuracy and457

per-question accuracy. A question is deemed correct if the458

model answers all of its options correctly.459

4.2 Evaluation on physical reasoning460

The question-answering results of various baseline models461

are shown in Table 3. Notably, there exist discrepancies in462

the relative performances of models across different kinds463

of questions, which suggests that diverse reasoning skills464

are necessitated by the questions in ComPhy.465

Factual Reasoning. To address factual questions in Com-466

Phy, models must identify visual attributes, analyze motion467

trajectories, and infer physical properties of objects. The468

results indicate that the “blind” models, namely Random,469

Frequent, and Blind-LSTM, perform significantly poorly470

on ComPhy compared to other models integrating visual471

context and linguistic information. Additionally, we observe472

that video question-answering models and pre-trained large473

vision language models exhibit lower performance com-474

pared to visual reasoning models like MAC and ALOE. We475

attribute this discrepancy to the fact that they are typically476

tailored for tasks such as object classification, action recogni-477

tion, and activity understanding rather than understanding478

physical events in ComPhy. Among these, MAC outper-479

forms the rest baselines when answering factual questions,480

underscoring the effectiveness of its compositional attention481

mechanism and iterative reasoning processes.482

Dynamcis Reasoning. A notable feature of ComPhy is its483

demand for models to generate counterfactual and future484

dynamic predictions by leveraging their identified physical485

properties to address posed questions. Among all the base-486

line models, we have observed that ALOE (Ref) consistently487

attains the highest performance levels in tasks involving488

counterfactual and future reasoning. We posit that this su- 489

perior performance is attributable to the utilization of self- 490

attention mechanisms and self-supervised object masking 491

techniques, enabling the model to effectively capture spatio- 492

temporal visual context and imagine counterfactual scenar- 493

ios for answering questions. 494

Reasoning with Large Vision-Language Models. We also 495

evaluate the performance of the recent large vision-language 496

models, ALPRO, Gemini and GPT-4V on ComPhy, which 497

were pre-trained on massive image/video-text pairs from 498

the internet. Despite their strong performance on traditional 499

visual question-answering benchmarks such as GQA [49], 500

VQAv2 [45], MSRVTT-QA [50] and MSVD-QA [50], all of 501

them underperform on ComPhy. The inferior performance 502

of large vision-language models (LVLMs) is attributed to 503

a gap in their training. These models are pretrained on 504

internet data, which primarily focuses on object categories 505

and semantic relations, lacking emphasis on physical com- 506

monsense. ComPhy underscores its value in addressing the 507

gap and complementing the missing physical commonsense 508

in existing visual question-answering benchmarks. 509

Reasoning with Reference Videos. The results reveal that 510

CNN-LSTM (Ref) and MAC (Ref) perform comparably or 511

slightly worse than their original counterparts, CNN-LSTM 512

and MAC. While ALOE (Ref) shows a modest improvement 513

over ALOE, the variant models do not exhibit substantial 514

improvements when incorporating the reference videos as 515

supplementary visual input. This phenomenon is likely due 516

to these models’ primary training on extensive datasets 517

comprising videos and question-answer pairs, hindering 518

their adaptability to ComPhy’s novel context, which ne- 519

cessitates discerning new compositional visible and hidden 520

physical properties from a limited number of examples. 521

Human Performance. To evaluate human performance in 522

ComPhy, 14 participants with a basic understanding of 523

physics and proficiency in English were tasked. After an 524

initial warm-up through a series of demonstration videos 525

and questions to confirm their comprehension of events and 526

physical properties, they were assigned to answer 25 diverse 527

question samples from ComPhy. Their accuracy rates are 528

as follows: 90.6% for factual questions, 88.0% for predictive 529

questions per option, 80.0% for counterfactual questions per 530

option, 75.9% for predictive questions per question, and 531

52.9% for counterfactual questions per question. 532

Reasoning in the Real World. We evaluated the perfor- 533

mance of various models on our collected real-world dataset 534

by fine-tuning each model on the dataset’s training split 535

and evaluating on the validation split (see Table 4). Results 536

indicate that ALOE achieves the highest accuracy on factual 537

questions (61.6%), consistent with its strong performance 538

observed in simulated scenarios. Notably, MAC shows a 539

balanced performance across all question types, particularly 540

excelling in predictive questions (57.1% per question accu- 541

racy). Interestingly, state-of-the-art general-purpose vision- 542

language models such as GPT-4o-mini and Gemini sig- 543

nificantly underperform compared to specialized models, 544

reflecting substantial limitations in their ability to reason 545

about physical interactions in real-world contexts. The sub- 546

stantial gap between human performance (exceeding 88% 547

across all categories) and the evaluated models underscores 548

the complexity and challenge of physical reasoning tasks. 549
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Differentiable Symbolic ExecutorVideo Perceiver

Target Videos

Obj 1

Obj 2

Obj 3

Obj 4

…

Reference Videos

Ref 1

Ref 4

Physical Property Inferencer
Program
Parser

I. Ground objects by visible concepts

II. Perceive hidden properties by graph

Object Mass 
Graph Relative Charge 

Graph

III. Predict hidden properties
Physical

Model
Answer

Ground
Truth

QA Loss

t-2
t-1
t

t+1

Property-based 
Dynamic Predictor

Visible Property Grounder

I. Predict visible objects concepts

TemporalRelationAttribute
Object-
Centric
Feature

Temporal

Relation

Object
Concepts

Physical

Attribute

Property Parser

Symbolic
Executor

Q: Which event would happen if the 
purple object were heavier?
C: The green cube would collide with 
the metal sphere.

Fig. 4: The perception module detects objects’ location and visual appearance attributes. The physical property learner
learns objects’ properties based on detected object trajectories. The dynamic predictor predicts objects’ dynamics in the
counterfactual scene based on objects’ properties and locations. Finally, an execution engine runs the program parsed by
the language parser on the predicted dynamic scene to answer the question.

Methods Factual Predictive Counterfactual
per opt. per ques. per opt. per ques.

Random 7.6 50.0 25.0 50.9 20.8
Frequent 41.7 53.6 28.7 50.0 23.9
Blind-LSTM 50.6 61.5 46.0 51.9 32.2

CNN-LSTM [40] 55.6 64.2 47.3 50.9 33.3
HCRN [41] 51.9 62.5 53.5 50.9 32.1

MAC [42] 58.9 60.9 57.1 52.8 35.8
ALOE [43] 60.8 60.6 42.4 47.1 28.7

CNN-LSTM (Ref) [40] 49.0 64.3 41.3 50.0 26.3
MAC (Ref) [42] 56.4 56.2 46.4 51.4 34.9
ALOE (Ref) [43] 61.6 61.4 42.8 51.6 32.1

ALPRO [44] 50.9 55.3 39.2 49.7 29.2
GPT-4o-mini [9] 42.6 49.6 23.2 47.5 26.0
Gemini [10] 32.5 57.7 23.1 52.1 29.8

Human Performance 90.0 95.0 90.0 94.4 88.9

TABLE 4: Evaluation of physical reasoning on the real video.
Human performance is based on sampled questions.

5 MODELS550

5.1 Model551

In this section, we present Physical Concept Reasoner552

(PCR), a new physical reasoning model. It aims to com-553

prehend objects’ visible properties, infer hidden physical554

properties and events, and image corresponding physical555

dynamics by observing the videos and responding to the556

associated questions. Compared with our preliminary mod-557

els [5], [8], it is able to infer hidden physical properties and558

predict corresponding property-based dynamics without559

explicit dense property annotations.560

PCR can be factorized into different functional modules561

for physical reasoning in videos. As shown in Fig. 4, the562

model consists of five major modules: (1) video perceiver, (2) 563

visible property grounder, (3) physical property inferencer, 564

(4) property-based dynamic predictor, and (5) differentiable 565

symbolic executor. When provided with a target video 566

alongside four reference videos and a query, PCR employs 567

a video perceiver to detect objects’ spatial locations across 568

frames and all videos. Subsequently, their trajectories are 569

processed by the physical property inferencer to deduce 570

their properties. Leveraging these data, the dynamic predic- 571

tor forecasts object movements based on their physical traits. 572

Lastly, a differentiable executor executes the program gen- 573

erated by a language parser [6], [47], utilizing the predicted 574

object motions to answer the query. Note that the object- 575

centric representation and outputs of various modules are 576

maintained in a differentiable manner, enabling direct op- 577

timization of each module through backpropagation when 578

answering video-related questions. 579

5.1.1 Video Perceiver 580

Object Tracking and Alignment. Given a target video and 581

4 reference videos, the video perceiver in PCR is responsible 582

to track objects in every video and align them across differ- 583

ent videos. The first step is to track objects in the videos. At 584

the t-th frame, our model first applies a regional proposal 585

network [51], [52] to detect all objects {bti}
Nt
i=1, where Nt 586

denote the object proposal number. The video perceiver 587

then get a set of object trajectories {on}Nn=1, where N is 588

the number of object trajectories, on = {bt}Tt=1 and T is 589

the number of frames. Similar to [5], [53], we first define 590

the connection score scnn(b
t
i, b

t+1
j ) between two proposals 591

bti and btj in connective frames as 592

scnn(b
t
i, b

t+1
j ) = sc(b

t
i) + sc(b

t+1
j ) + IoU(bti, b

t+1
j ), (1)
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where sc(b
t
i) is the confidence score predicted by the re-593

gion proposal network and IoU denotes the interaction594

over union between two proposals. We define the connec-595

tion score of a candidate object trajectory on={btn}Tt=1 as596

E(on) =
∑T−1

t=1 scnn(b
t
n, b

t+1
n ). We select the set of object597

trajectories {on}Nn=1 with the highest connection scores and598

solve the problem with a linear sum assignment [54]. We599

then align objects in reference videos to the target videos600

with the predicted static visual attributes, color, shape, and601

material. Objects in reference videos are assigned to objects602

in the target video that has the most similar predicted labels.603

Object-Centric Representation. We use a set of object-604

centric features to represent the videos for physical reason-605

ing. Specifically, we compute the averaged visual regional606

features (fvn ∈ RDv ) from the faster-RCNN [52] for static607

visual appearance attributes like shape, color and material,608

where Dv equals to 512 and is the regional feature’s di-609

mension from ResNet-34. We adopt the temporal trajectory610

features (ftn ∈ R×Dt ) for predicting temporal concepts like611

in and out, where Ds = T × 4 is the concatenation of the612

object location btn across all T frames. Since we can only613

infer objects’ physical property values from their movement614

and interaction, we use a set of aligned trajectory features615

for physical property inference. For the n-th object in the616

target video, we represent it with pn and {pn,r}Rr=1, where617

pt
n,r and pn,r are the concatenation of the object coordinates618

(xt
n, y

t
n) along all T frames in the target video and the r-619

th reference video. R equals to 4 and is the number of the620

reference videos. We add all the objects without appearance621

in the specific reference videos with zero vectors.622

We use the interaction feature (f int
i,j,t ∈ RDint ) for623

prediction the the collision event between the i-th and the624

j-th objects at the t-th frame. we define f int
i,j,t = fu

i,j,t||f loc
i,j,t,625

where fu
i,j,t is the ResNet feature of the union region of the626

i-th and j-th objects at the t-th frame and fsp
i,j,t is a spatial627

embedding for correlations between bounding box trajecto-628

ries. We define fsp
i,j,t = IoU(si,t, sj,t)||(si,t−sj,t)||(si,t×sj,t),629

where si,t = ||t+2
k=t−2b

k
i is the concatenated segment of the630

i-th object centering at the t-th frame. It concatenates the631

intersection over union (IoU), difference (−), and multiplica-632

tion (×) of the normalized trajectory coordinates for the i-th633

and j-th objects centering at the t-th frame. For the collision634

event in the future and counterfactual scenes, we predict the635

collision event based on the fi,j,t only since there is no RGB636

image for extracting the fu
i,j,t feature.637

5.1.2 Visible property grounder638

The visible property grounder grounds objects’ visible prop-639

erties like color, shape, and collision onto the objects ex-640

tracted by the video perceiver. PCR accomplishes this by641

aligning the representations of objects and events with642

learned concept embeddings in PCR. For example, to predict643

the n-th object is red or not, we use a confidence score644

sredn . We define sredn =
[
cos(cred,msa(f

v
n))− δ

]
/λ, where645

cred is a vector, representing the concept red, msa is a646

fully-connected layer, mapping the object feature fv
n to the647

color space. cos calculates the cosine similarity between648

the two vectors. δ and λsa are constant scalars, controlling649

the value range of sred. Similarly, we predict two objects650

collide at the t-th frame with scli,j,t, where scli,j,t equals651

to scli,j,t =
[
cos(ccl,mcl(f

int
i,j,t))− δ

]
/λ. ccl represents the652

concept vector for the collision event and mcl is a fully- 653

connected layer transforming f int
i,j,t into the desired space. 654

5.1.3 Physical Property Inferencer 655

At the heart of our model, the Physical Property Inferencer 656

(PPI) handles intricate and composite physical interactions 657

by analyzing object motion trajectories extracted from both 658

reference and target videos. The PPI utilizes a graph neural 659

network [55] to predict mass and relative charge for each 660

object pair, where node features capture object-centric prop- 661

erties (such as mass), and edge features encode pairwise 662

properties (such as relative charge). The PPI employs a se- 663

ries of message-passing operations on the input trajectories 664

of N objects within the video. The process is described by: 665

v0
n =femb(p

t
n), el

n1,n2
= f l

rel(v
l
n1

,vl
n2

),

vl+1
n1

= f l
enc(

∑
n1 ̸=n2

el
n1,n2

), (2)

Here, f(...) are functions implemented by fully- 666

connected layers. We then use two fully-connected layers 667

to predict the output mass label fpred
v (v2

i ) and edge charge 668

label fpred
e (e1i,j), respectively. Notably, the PPI is not trained 669

in a fully-supervised manner but is optimized via leverag- 670

ing the gradients from differentiable question answering. 671

The complete physical property of a set of videos can be 672

represented as a fully connected property graph, where 673

each node corresponds to an object that appears in at least 674

one video within the set. Meanwhile, each edge indicates 675

whether the connected nodes possess the same, opposite, 676

or no relative charge ( i.e. it signifies whether one or both 677

objects are charge-neutral). In Figure 4, we illustrate that the 678

physical property inferencer (PPI) independently predicts 679

the objects’ properties in each reference video, covering 680

only part of the property graph. To align predictions across 681

different nodes and edges, we utilize the static attributes of 682

objects identified by the video perceiver. By aggregating the 683

sub-graphs generated from each video in the set through 684

max-pooling over nodes and edge predictions, we obtain 685

the complete object properties graph. 686

5.1.4 Property-based Dynamic Predictor 687

To predict objects’ positions at the t + 1 frame, based on their 688

full trajectories and properties (mass and charge) at the t- 689

th frame, we employ a dynamic predictor implemented by 690

graph neural networks. For the n-th object at the t-th frame, 691

we represent it with ot,0
n = ||tt−3(x

t
n, y

t
n, w

t
n, , h

t
n,mn), using 692

a concatenation of its object location (xt
n, y

t
n), size (wt

n, h
t
n) 693

and the mass prediction (mn) by the Physical Property 694

inferener over a history window of 3. By incorporating a 695

history of object locations rather than solely relying on the 696

location at the t-th frame, we encode object velocity and 697

accommodate for perception errors. Specifically, we have 698

ht,0
n1,n2

=
∑
k

zn1,n2,kg
k
emb(o

t,0
n1

, ot,0
n2

),

ot,l+1
n2

= ot,l
n2

+ glrel

(
n1 ̸=n2∑

n1

(ht,l
n1,n2

)

)
,

ht,l+1
n1,n2

=
∑
k

zn1,n2,kg
k,l
enc([o

t,l+1
n1

, ot,0
n1

], [ot,l+1
n2

, ot,0
n2

]),

(3)

where the variable k ∈ 0, 1, 2 represents whether the two 699

connected nodes carry the same, opposite, or no relative 700
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charge. The k-th element of the one-hot indication vector701

zn1, n2 is denoted as zn1,n2,k. The message-passing steps702

are indicated by l ∈ [0, 1] and functions g(...) are im-703

plemented through fully-connected layers. For predicting704

object location and size in the (t + 1)-th frame, we em-705

ploy a function comprising a single fully-connected layer,706

gpred(o
t,2
n2
). To forecast future frames for predictive ques-707

tions, we initialize the dynamic predictor with the last three708

frames of the target video and iteratively predict subsequent709

frames by feeding the generated predictions back into the710

model. For counterfactual queries, we use the first three711

frames of the target video as input, updating the predicted712

objects’ mass labels (mi) and the corresponding one-hot713

indicator vector zi,j accordingly, to obtain physical predic-714

tions with counterfactual properties labels.715

5.1.5 Differentiable Symbolic Executor716

The differentiable symbolic executor first adopts a program717

parser [6], [56] to transform the input question into a se-718

ries of program operations. The program parser is trained719

in a fully-supervised manner as in [5], [6]. The executor720

then executes the symbolic operations on the latent object-721

centric representation derived from the other modules and722

the output of the final operator serves as the solution to723

the question. We adopt a probabilistic approach, similar724

to the methodology proposed in [7], to represent the ob-725

ject states, events, and results of all operators during the726

training phase. This probabilistic representation allows for a727

differentiable execution process, considering the latent rep-728

resentations derived from both the observed and predicted729

scenes. As shown in the dotted lines of Figure 4, it becomes730

feasible to optimize the video perceiver, visible property731

grounder, physical property inferencer, and property-based732

dynamic predictor within the symbolic execution procedure.733

5.2 Training Mechanisms734

The proposed PCR features multiple functional modules,735

and optimizing these modules presents great challenges due736

to several factors: 1) the lack of dense property annotations737

for both visible concepts and hidden physical properties, 2)738

the complexity of physical properties and their interaction739

with other visible properties, and 3) fewer training exam-740

ples compared to the previous physical reasoning dataset741

CLEVRER. To address these challenges, we propose two742

novel training mechanisms for model optimization: 1) Cur-743

riculum Learning for Physical Reasoning in Section 5.2.1,744

and 2) Learning by Imagination in Section 5.2.2.745

5.2.1 Curriculum Learning for Physical Reasoning746

We design a novel curriculum learning mechanism to op-747

timize the PCR introduced in Section 5.1. We first train a748

program parser to parse the question and answers into ex-749

ecutable programs with a sequence-to-sequence model [56].750

In lesson 1, we filter out and select the factual questions751

without physical property description to learn an initial752

model to ground visible properties like colors, shapes, and753

collisions. In lesson 2, we include all the factual questions to754

teach the model to infer objects’ physical properties with755

the physical property inferencer. During this lesson, we756

align the objects’ dynamics in different videos and property757

predictions with the static visible property label prediction 758

from lesson 1. In lesson 3, we utilize the property prediction 759

results from the last lesson as pseudo labels to train a 760

property-based dynamic predictor, which predicts objects’ 761

dynamics in the counterfactual and predictive scenes. Fi- 762

nally, we fine-tune all components in an end-to-end manner 763

with all question-answer pairs from the training set. 764

5.2.2 Learning by Imagination 765

One key challenge for the PCR on the ComPhy dataset is 766

the complexity of its video scenarios compared to previous 767

datasets like CLEVRER [2], which has 152,572 question- 768

answer pairs, while ComPhy has only 55,764 pairs but 769

with more variances in physical property variances. To 770

improve the training efficiency, we introduce a new train- 771

ing mechanism, named Learning by Imagination. Specifically, 772

when a counterfactual question states “Which event would 773

happen if the purple object were heavier?”, it implicitly indicates 774

that ”there is a purple object” and “the purple object is not 775

heavy”. These implicit statements can be transformed into 776

executable programs to enhance the learning of both the vis- 777

ible property grounder and the physical property inference 778

introduced in Section 5.1.2. Note that the ability to learn and 779

reason in counterfactual situations is a hallmark of human 780

thought [57], [58]. 781

5.3 Performance Analysis 782

Effectiveness of Physical Property Inference. We com- 783

pare the proposed PCR with the previous neuro-symbolic 784

method CPL [5] in table 5. We can see that the PCR performs 785

better on all kinds of questions compared to the baseline 786

methods in Table 3. This shows the effectiveness of neuro- 787

symbolic models for physical reasoning. Second, although 788

our PCR has no reliance on physical property labels and 789

visual attribute labels during training, it can achieve compa- 790

rable performance to the previous model CPL that requires 791

dense annotation for videos on factual questions. 792

One distinguished advantage of PCR over end-to-end 793

models [41], [43] is it enables step-by-step investigations and 794

thorough analysis for physical concept learning in videos. 795

We compare the model prediction from the PCR with the 796

ground-truth labels and calculate the accuracy. Table 7 lists 797

the result. We found that our model could effectively grasp 798

visible concepts like “colors”, “moving” and “collisions”. We 799

also notice that the physical property inferencer in PCR 800

can achieve reasonable accuracy on physical concepts like 801

“mass” and “charge”. which shows PCR is able to learn phys- 802

ical properties from objects’ trajectories and interactions. 803

However, we also notice the performance gap between the 804

hidden physical properties and the visible properties, which 805

indicates that the bottleneck of the performance on factual 806

questions lies in the hidden physical property inference. 807

Effectiveness of Dynamics Reasoning. We further compare 808

our PCR with CPL and its variant CPL-DPI for dynamic rea- 809

soning in table 5. CPL-DPI follows the previous model NS- 810

DR [6] to adopt dynamic particle interaction networks [59] 811

(DPI) for dynamic prediction. Note that DPI adopts graph 812

neural networks for dynamic prediction without consider- 813

ing the variance of physical properties. Compared CPL and 814

PCR with CPL-DPI, we can see the importance of modeling 815
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Methods Factual Predictive Counterfactual

per opt. per ques. per opt. per ques.

CPL-DPI [59] - 73.3 50.8 61.1 16.6
CPL [8] 80.5 75.3 56.4 68.3 29.1

PCR 76.0 80.0 62.0 70.0 29.0
TABLE 5: Evaluation of PCR on the test set of ComPhy.
The best performance is in boldface.

Methods Factual Predictive Counterfactual

per opt. per ques. per opt. per ques.

PCR w/o R 68.7 52.0 28.1 54.9 28.0
PCR w/o CI 70.3 51.2 24.4 54.0 28.0

PCR 78.3 75.0 56.5 70.5 50.2
TABLE 6: Ablation study of PCR on the validation set of
ComPhy. The best performance is in boldface.

Counterfactual Question: Which event would not
happen if the cube were uncharged?
Choice: The cylinder and the sphere would collide.
Answer: Correct

time

…
1

2

3

obj1 and obj2 attract

1

2
3

obj2 and obj3 collide

Physical Property Inferencer

I. Parse factual charge
properties

Neg-
charged

Pos-
charged

Un-
charged

II. Modify physical property & predict new dynamics

Original
Relative Charge Graph

ne
utr
al

neutral

attractive

Programs Concepts Outputs

1. filter_shape cube

2. counterfact_charge

attractive

neutral

repulsive

3. filter_shape
cylinder

sphere

4. filter_collision collision

Symbolic Executor

selected
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Wrong
(0.91)

5. not negate -1× original concept Correct
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Relative Charge Graph

ne
utr
al

neutral

neutral

Un-
charged

Dynamic Predictor

Input Video and Question

Fig. 5: A qualitative example of PCR on ComPhy. The left-up blue box shows the original video and a counterfactual
question to answer. The right half table shows the executable program sequence parsed from the question with concepts
related to it and outputs after execution. Specifically, the left-down chart illustrates the execution process of PCR for the
program “counterfact charge”: 1. PCR utilizes a PPI to parse factual charge properties of objects in the scene; 2. PCR
modifies their properties according to the counterfactual concept and predict new dynamics using a dynamic predictor.

Methods Static Attributes Dynamic Attributes Events Physical Properties

Color Shape Material Moving Stationary In Out Collision Mass Charge

PCR w/o R 91.0 91.8 92.8 83.3 85.2 85.6 81.8 86.8 79.5 45.0
PCR w/o CI 91.9 89.1 94.0 82.6 84.9 86.3 81.4 89.0 80.8 44.8
PCR 96.3 96.8 97.1 81.5 86.0 85.5 70.3 88.0 86.8 68.1

TABLE 7: Evaluation of video concept learning on the validation set.

mass and charges on nodes and edges of the graph neural816

networks for dynamic prediction. Moreover, compared with817

CPL, PCR achieves better performance on predictive ques-818

tions and performs competitively on counterfactual ques-819

tions, which shows the effectiveness of the differentiable820

executor for the optimization of property-based dynamic821

predictor, physical property inference, and visible property822

grounder. The performance of our approach surpasses that823

of the baselines listed in table 3, particularly in counter-824

factual and predictive questions. This achievement demon-825

strates the model’s capability to predict the movements of826

objects in counterfactual and future scenarios, based on the827

identification of their underlying physical properties. 828

Furthermore, our evaluation in Section 4.2 highlights a 829

noticeable disparity between the performance of our model, 830

PCR, and human performance, particularly in the domain 831

of counterfactual reasoning. We observed that PCR’s dy- 832

namic predictor still exhibits limitations when it comes to 833

long-term dynamic prediction. This indicates that further 834

enhancements to the dynamic predictor could potentially 835

yield even higher performance improvements for PCR. 836

Ablation Study. We conduct a series of ablation studies to 837

prove the effectiveness of the PCR in table 6 and table 7. PCR 838

w/o R denotes learning the property model without using 839
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reference videos. PCR w/o CI denotes the model without840

counterfactual imaging. We want to answer the following841

questions. We report the question-answering accuracy in842

table 6 and the concept classification accuracy in table 7.843

Comparing with PCR w/o R and PCR, we can see that844

reference videos provide important information for concept845

identification especially for the physical properties, mass and846

charge in table 7 and constantly improve question-answering847

performance in different kinds of questions. Comparing848

PCR w/o CI and PCR, we can see that the counterfactual849

imaging mechanism in Section 5.2.2 can improve the mod-850

els’ abilities in physical property identification in table 7,851

showing its effectiveness to learn physical reasoning.852

More Diverse Physical Simulated Scenes. To better evalu-853

ate the model’s performance on diverse physical scenes, we854

have simulated a diverse set of ComPhy dataset. The diverse855

set introduces 13 distinct object categories—including items856

such as mugs, pots, chairs, and more—in contrast to the857

primitive shapes used in the original benchmark. In addi-858

tion, we incorporate 9 varied backgrounds with realistic tex-859

tures and lighting conditions, and increase the total number860

of possible question-answer pairs to 175. The new objects861

span a wider range of shapes and material properties. These862

enhancements allow for a richer set of physical interactions,863

enabling the simulation of complex, compositional events.864

We have also conducted new experiments on these new865

scenes, and the performance results can be seen in Table 8.866

From the table, we have the following observations. First,867

we can see that our model (PCR) still constantly outper-868

forms the other baselines, showing the effectiveness of using869

neuro-symbolic models for physical reasoning. Second, we870

also observe that the average model performance is worse871

than their accuracy on the original data in Table 3 and872

Table 5. We believe that the reason is that the new physical873

scenes have provided more diverse physical interaction874

among the objects, making it more challenging for the AI875

models. We have also conducted a human study similar876

to the original ComPhy paper. The accuracy for different877

kinds of questions is 88.6 for factual questions, 73.7 for878

predictive questions, and 78.9 for counterfactual questions,879

much better than existing models in Table 8. This shows880

that although the scenes become more diverse, people can881

still handle these questions well. We provide more details882

on diverse simulated videos in the supplementary material.883

Generalization to Real-World Scenes. We evaluated the884

performance of our new model, PCR, on the real-world885

dataset. It achieved 63.5% accuracy on factual questions,886

70.4% on predictive questions (per option), 62.7% on predic-887

tive questions (per question), 54.6% on counterfactual ques-888

tions (per option), and 36.5% on counterfactual questions889

(per question). From Table 4, PCR consistently outperforms890

the MAC model across all question types, demonstrating its891

enhanced effectiveness in physical reasoning.892

Qualitative Case Study. As shown in Figure 5, PCR can893

transfer the question query into a series of executable op-894

erators, perceive objects’ visible properties, infer objects’895

physical properties, and predict their corresponding dynam-896

ics to correct answer the question. Note that such step-by-897

step investigation is not possible in previous end-to-end898

models like MAC and ALOE, showing the transparency and899

interpretability of our PCR.900

Methods Factual Predictive Counterfactual
per opt. per ques. per opt. per ques.

Random 1.8 50.1 22.9 48.1 24.0
Frequent 15.7 50.0 0.0 50.0 0.0
Blind-LSTM 43.2 50.3 25.0 49.2 23.2

CNN-LSTM [40] 49.6 52.8 29.9 55.7 29.7
HCRN [41] 51.5 56.3 34.1 51.9 30.1

MAC [42] 51.7 50.4 28.9 51.9 26.3
ALOE [43] 46.9 52.4 29.0 51.5 28.6

CNN-LSTM (Ref) [40] 49.7 51.4 23.3 55.6 30.5
MAC (Ref) [42] 50.6 51.9 33.3 50.8 25.2
ALOE (Ref) [43] 48.6 51.2 26.1 52.9 27.2

ALPRO [44] 47.1 51.8 28.9 52.6 28.4
GPT-4o-mini [9] 42.5 50.0 29.2 58.8 30.7
Gemini [10] 34.2 50.3 25.7 49.4 30.6

PCR (ours) 68.4 58.3 34.9 60.3 32.8

Human Performance 88.6 82.9 73.7 88.2 78.9

TABLE 8: Evaluation of physical reasoning on ComPhy-DIV.
Human performance is based on sampled questions. See the
text for more details. Red text and blue text indicate the first
and second best results other than human performance.

5.4 Discussion on Intergrate PCR with LVLMs 901

Combining PCR with LVLMs offers a powerful paradigm 902

for enhancing both robustness and flexibility. First, LVLMs 903

can replace or augment the program parser in PCR via 904

in-context learning, improving program synthesis for di- 905

verse linguistic formulations. Second, LVLMs’ broad world 906

knowledge can be invoked through a dedicated large lan- 907

guage model-based module to handle commonsense rea- 908

soning tasks that lie outside PCR ’s original training dis- 909

tribution. Finally, LVLMs can act as high-level controllers, 910

orchestrating PCR ’s neural modules alongside external 911

modules to seamlessly tackle novel tasks. This integration 912

leverages the precise, learned functionality of PCR and the 913

generalist capabilities of LVLMs, yielding a more versatile 914

and powerful system. We provide more experiments and 915

analysis of integration of PCR and LVLMs in the supple- 916

mentary material. 917

6 CONCLUSIONS 918

In this paper, we introduce the Compositional Physical Rea- 919

soning benchmarks, which challenge models to infer hidden 920

physical properties such as mass and charge from limited 921

video observations and leverage this information to predict 922

dynamics and answer structured questions. Our evaluation 923

of state-of-the-art models on ComPhy reveals substantial 924

limitations in their ability to reason about these hidden 925

attributes. We also propose a neuro-symbolic framework, 926

PCR, that integrates object-centric representations with 927

modular reasoning to jointly learn and infer both visible 928

and hidden physical properties. We further present a real- 929

world dataset to evaluate the generalization of physical rea- 930

soning models beyond simulation. Our findings highlight 931

the critical role of hidden physical properties in dynamic 932

scene understanding and expose the gap between current 933

model capabilities and human-level reasoning, paving the 934

way for more robust and generalizable physical reasoning 935

in AI systems. 936
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